Imaging of Scattered Radiation for Real–Time Tracking of Tumor Motion During Lung SBRT

Gage Redler, Damian Bernard, Alistair Templeton, Chithra Nair, Julius Turian, and James C. H. Chu

Lung Cancer

- Lung cancer is the most lethal cancer:
 - Over 224,000 new diagnoses in the U.S. predicted for 2015
 - 159,000 expected deaths in the U.S. predicted for 2015
 - More lung cancer related deaths than breast cancer related deaths in women

- Various treatment options:
 - Chemotherapy
 - Targeted therapy (e.g., monoclonal antibodies)
 - Surgery (e.g., wedge resection, lobectomy, pneumonectomy, cryosurgery)
 - Radiation therapy (e.g., 3D, IMRT, SBRT)

Lung SBRT

- Promising alternative to surgery
 - Large radiation dose in few fractions (e.g., 18Gy×3 or 12Gy×5)
 - Increased TCP
 - Increased NTCP

- Requires accurate target localization
 - Radiation delivery accuracy ~1mm
 - Lung tumor motion ~2-3cm
 - Internal target not directly visible

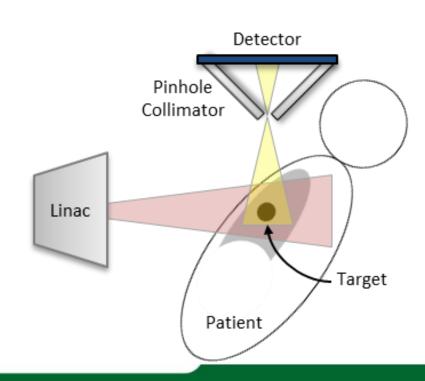
Lung SBRT Image Guidance

Current tumor localization methods:

- EPID
- CBCT
- FBCT (kV: CT-on-rails or MV: Tomotherapy)
- Stereoscopic kV imaging (snapshots or fluoroscopic)
- Ultrasound
- Optical Imaging (surface tracking)
- MRI
- Electromagnetic transponder tracking
- Chest expansion/contraction
- Hybrid modalities (e.g., ExacTrac)

Current limitations:

- Only 2D or limited 3D information
- Additional radiation dose
- Not available during treatment
- Not real-time
- Logistically complex (limited positioning options, collision danger)
- Invasive fiducial implants required
- Poor image contrast
- Not directly imaging the target


Scatter Imaging

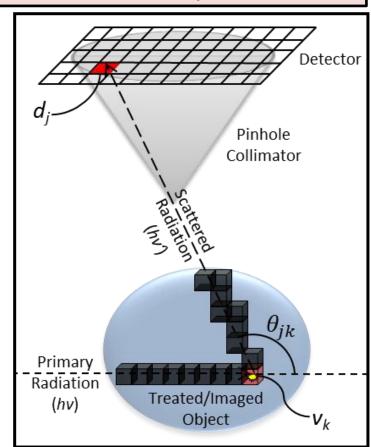
General Concept:

- Incident radiation interacts within patient
- Energy not deposited carried away
- Scatter from internal structures dependent on material composition
- Image of spatial distribution of scatter gives 2D anatomical information

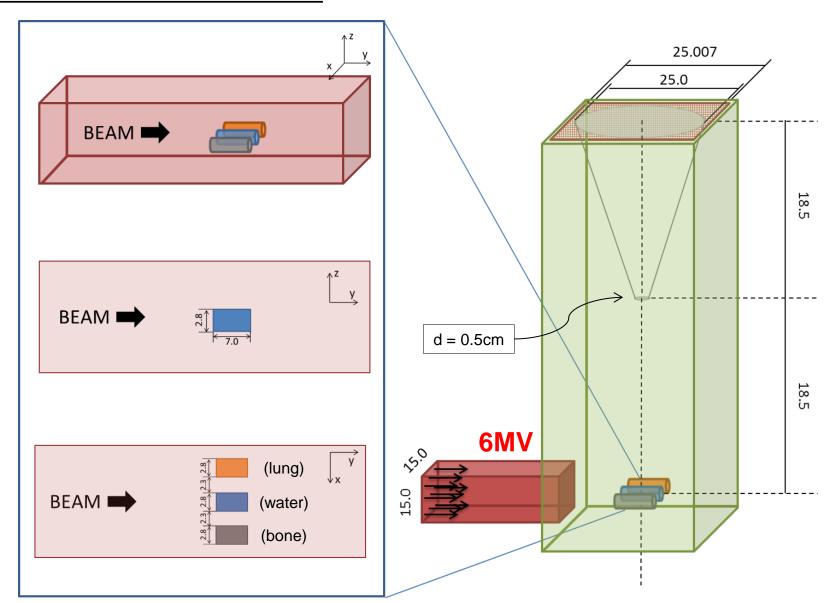
Benefits:

- No additional radiation dose
- No required fiducial implants
- Flexible detector placement
- Multiple detectors → 3D
- Rapid image formation → real-time imaging

Scatter Imaging


Analytic System Model:

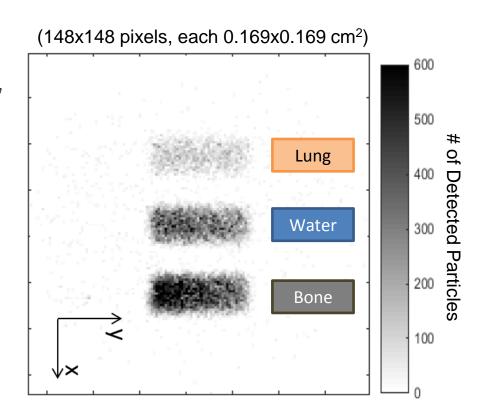
$$(g_{j\times 1} = \mathcal{H}_{j\times k} f_{k\times 1})$$

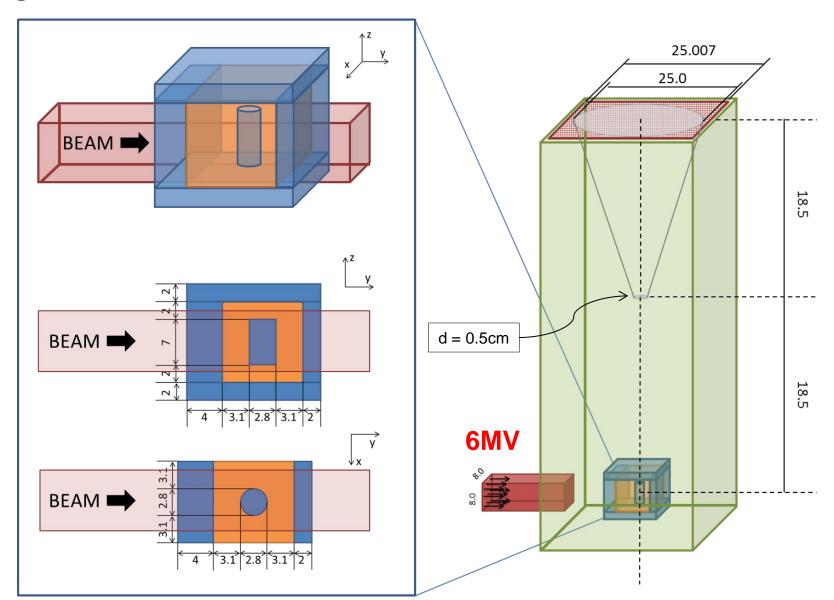

$$\mathcal{H}_{jk} = \left[\exp\left(-\sum_{n} \bar{\mu}_{n} l_{n}\right) \right] \times [\bar{C}_{k}] \times [\bar{T}_{k}] \times \left[\exp\left(-\sum_{m} \bar{\mu'}_{m} l'_{m}\right) \right]$$

 \mathcal{H}_{jk} - signal contribution from scattering element v_k to detector element d_j

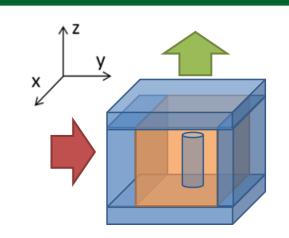
- Incident beam attenuation
- Probability of scatter event
- Probability of scattering angle θ_{ik}
 - Geometric considerations (pinhole size, object-pinhole distance, pinhole-detector distance)
 - Klein-Nishina differential cross section
- Scattered radiation attenuation

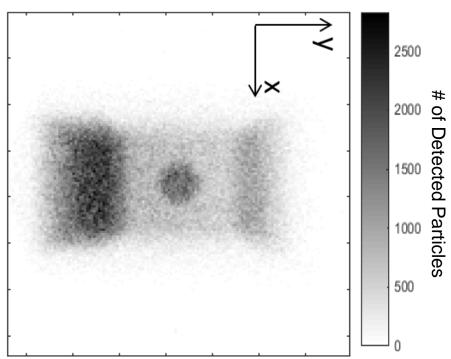
Contrast Between Materials


Contrast Between Materials

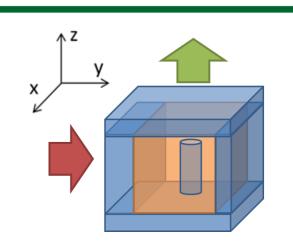

- Dose to water cylinder = 0.065 cGy
 - $SNR_L = 1.9$, $SNR_W = 3.3$, $SNR_B = 3.5$

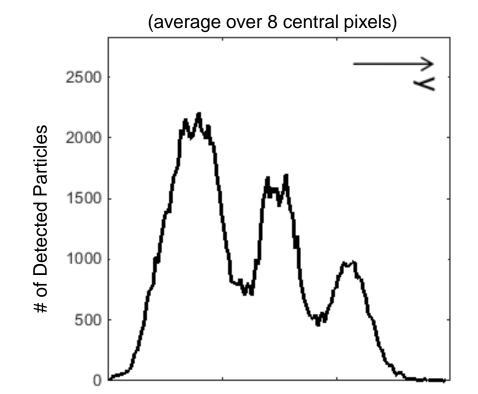
- Assuming $N \propto \frac{1}{\sqrt{Dose}}$, for 1.0 cGy
 - $SNR_L = 7.6$, $SNR_W = 12.7$, $SNR_B = 13.7$

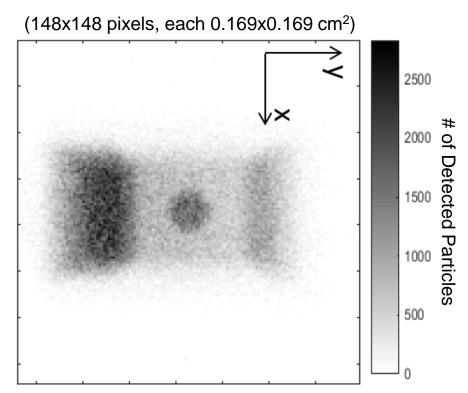

Material	Monte Carlo	Analytic Calculation		
Water	1.00 ± 0.28	1.00		
Lung	0.31 ± 0.12	0.35		
Bone	1.39 ± 0.40	1.35		


Lung Tumor Phantom

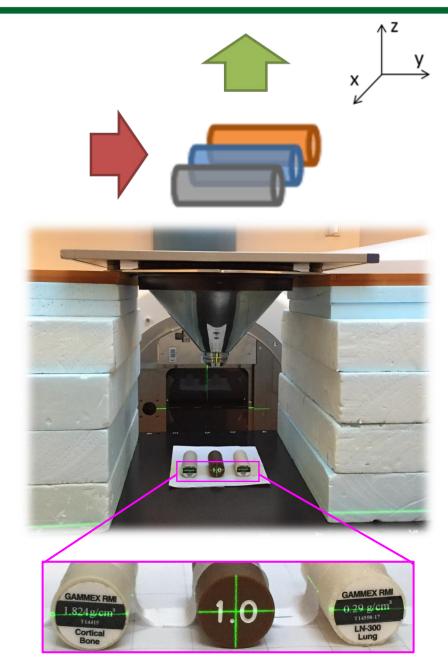
$$CNR = \frac{|S_T - \bar{S}_L|}{\sigma_T}$$

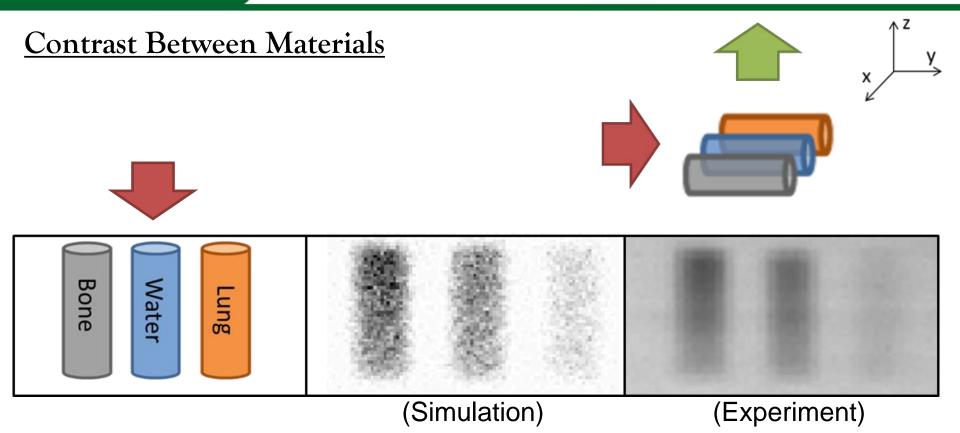



- Dose to isocenter = 0.153 cGy
 - SNR = 8.3
 - CNR = 4.8
 - 1200 cGy/min → 0.153 cGy < 0.01 sec
- Assuming $N \propto 1/\sqrt{Dose}$, for 1.0 cGy
 - SNR = 21.2
 - CNR = 12.3
 - $1200 \text{ cGy/min} \rightarrow 1.0 \text{ cGy} = 0.05 \text{ sec}$

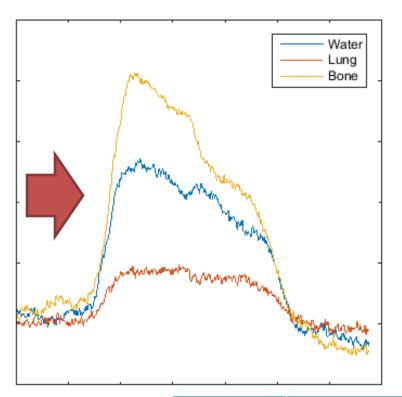

(148x148 pixels, each 0.169x0.169 cm²)

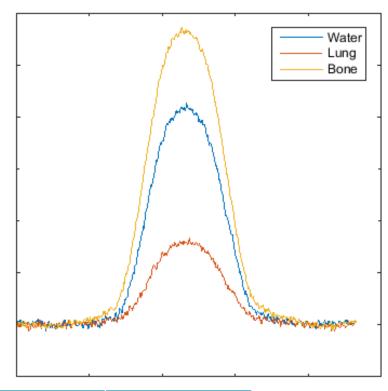
- Clear contrast between water and lung
- Beam intensity attenuates through object



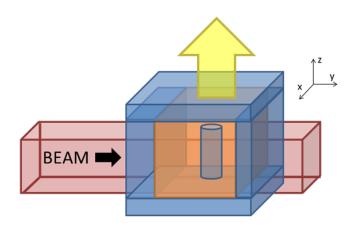


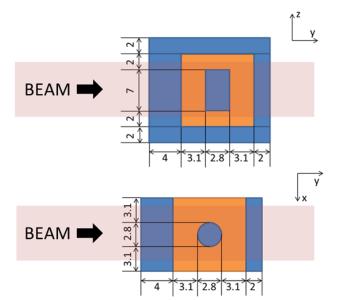
Contrast Between Materials


- Lung SBRT treatment parameters used:
 - Varian TrueBeam Linac
 - 6MV FFF
 - Dose rate = 1200 MU/min
- 5000 MU delivered
- Diagnostic flat panel detector
- Nuclear medicine pinhole camera
- Background image acquired/subtracted

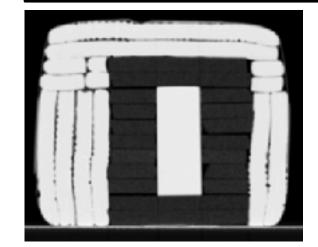


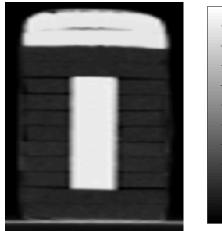
Material	Monte Carlo	Analytic Calculation	Experiment	
Water	1.00 ± 0.28	1.00	1.00 ± 0.08	
Lung	0.31 ± 0.12	0.35	0.37 ± 0.08	
Bone	1.39 ± 0.40	1.35	1.36 ± 0.08	

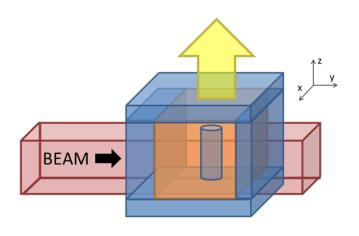

Contrast Between Materials

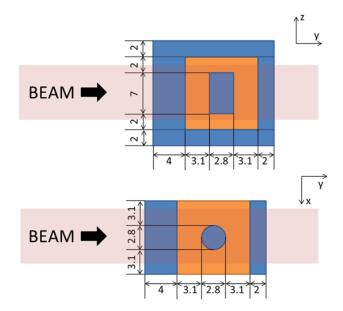


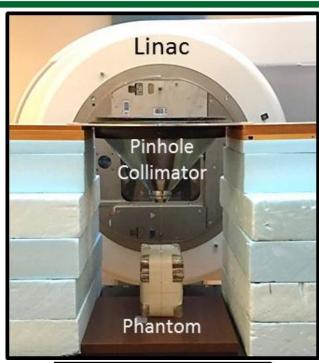
Material	Monte Carlo	Analytic Calculation	Experiment	
Water	1.00 ± 0.28	1.00	1.00 ± 0.08	
Lung	0.31 ± 0.12	0.35	0.37 ± 0.08	
Bone	1.39 ± 0.40	1.35	1.36 ± 0.08	

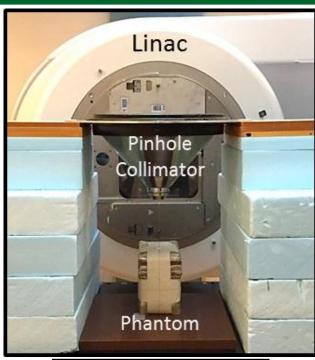

Lung Tumor Phantom

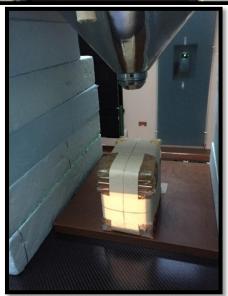




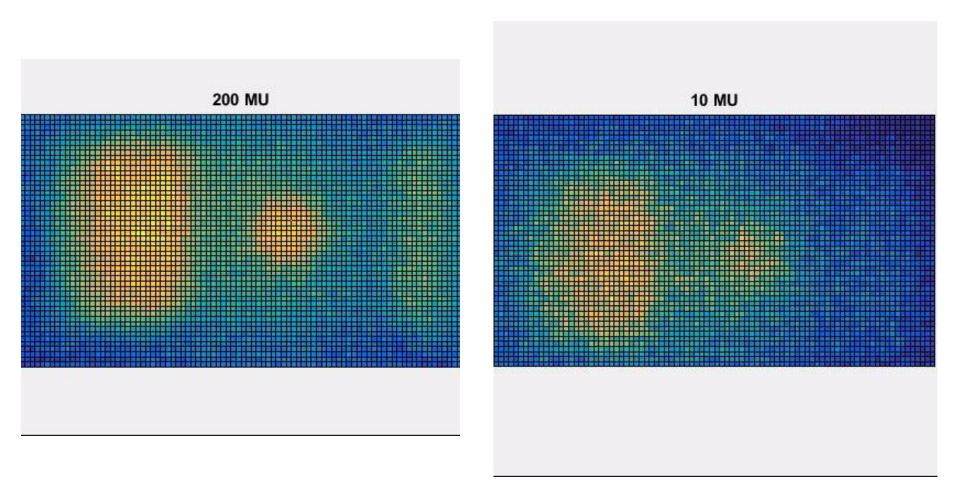

 $\frac{\text{HU}}{\text{Solid Water}} = 9.1 \pm 3.4$ Bolus = -7.1 ± 3.7 Cork = -828.5 ± 13.2







- Lung SBRT treatment parameters used:
 - Varian TrueBeam Linac
 - 6MV FFF
 - Dose rate = 1200 MU/min
- Various MU delivered
- Diagnostic flat panel detector
- Nuclear medicine pinhole camera
- Background image acquired/subtracted

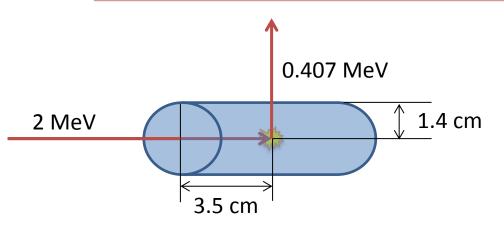


Beam Direction				•			
Dose (MU)	5000	1000	500	200	100	50	10
Time (sec)	250	50	25	10	5	2.5	0.5
SNR	149.9	99.3	78.8	49.8	32.3	30.0	8.9
CNR	29.1	19.0	15.5	9.7	6.7	5.5	4.1

Summary and Conclusions

- Scatter imaging may be useful for image based tumor tracking
 - No additional radiation dose
 - No required fiducial implants
 - Flexible detector placement
 - Multiple detectors → 3D
 - Rapid image formation → real-time imaging
- Analytic model developed to describe scatter imaging
- Preliminary Monte Carlo simulations
 - Scatter imaging differentiates objects of different composition
 - Using a simplified lung tumor model the target can be clearly identified
- Preliminary experimental measurements agree qualitatively with simulation results
 - Images as fast as 0.5sec (10MU) begin to resolve target → Real-time imaging

Thank You


Questions?

Analytic System Model

$$\mathcal{H}_{jk} = \left[\exp\left(-\sum_{n} \bar{\mu}_{n} l_{n}\right) \right] \times [\bar{C}_{k}] \times [\bar{T}_{k}] \times \left[\exp\left(-\sum_{m} \bar{\mu'}_{m} l'_{m}\right) \right]$$

Material	Monte Carlo	Experiment			
Water	1.00 ± 0.28	1.00 ± 0.08			
Lung	0.31 ± 0.12	0.37 ± 0.08			
Bone	1.39 ± 0.40	1.36 ± 0.08			

(Assume scatter at 90°, so ignore \bar{T}_k)

Material	$ar{ar{\mathcal{C}}_k}\left(\!rac{\mathbf{Z}}{A}\! ight)$	$\rho\left[\frac{g}{cm^3}\right]$	$rac{\mu}{ ho}\left[rac{cm^2}{g} ight]$ (2 MeV)	$\mu\left[cm^{-1} ight]$ (2 MeV)	$\expigg(-\sum_nar{\mu}_nl_nigg)$ (2 MeV)	$rac{\mu}{ ho}\left[rac{cm^2}{g} ight]$ (0.407 MeV)	$\mu\left[cm^{-1} ight]$ (0.407 MeV)	$\expigg(-\sum_{m}ar{\mu'}_{m}l'_{m}igg)$ (0.407 MeV)	\mathcal{H}_{jk}
Water	1.00	1.00	0.0493	0.0493	0.8415	0.1061	0.1061	0.8620	0.725 (1.00)
Lung	0.28	0.29	0.0461	0.0142	0.9515	0.1053	0.0305	0.9582	0.255 (0.35)
Bone	1.69	1.824	0.0490	0.0840	0.7453	0.0991	0.1808	0.7764	0.978 (1.35)

Defining SNR

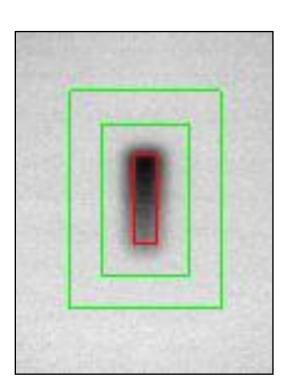
Specifically looking at "tumor" in image

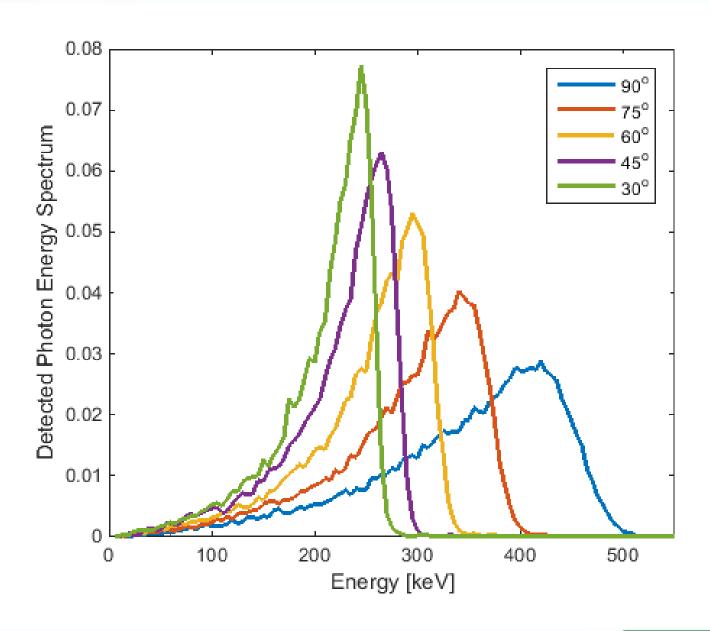
$$SNR = \frac{S_T}{\sigma_T}$$

- $-S_T$ is the image intensity, averaged over a central region within the tumor
- σ_T is the standard deviation of the image intensity over the same central region within the tumor

Defining CNR

- Specifically looking at "tumor" in image
- Tumor is embedded in lung
- CNR is a metric to quantify how well tumor can be differentiated from the surrounding lung relative to the random noise present in the image

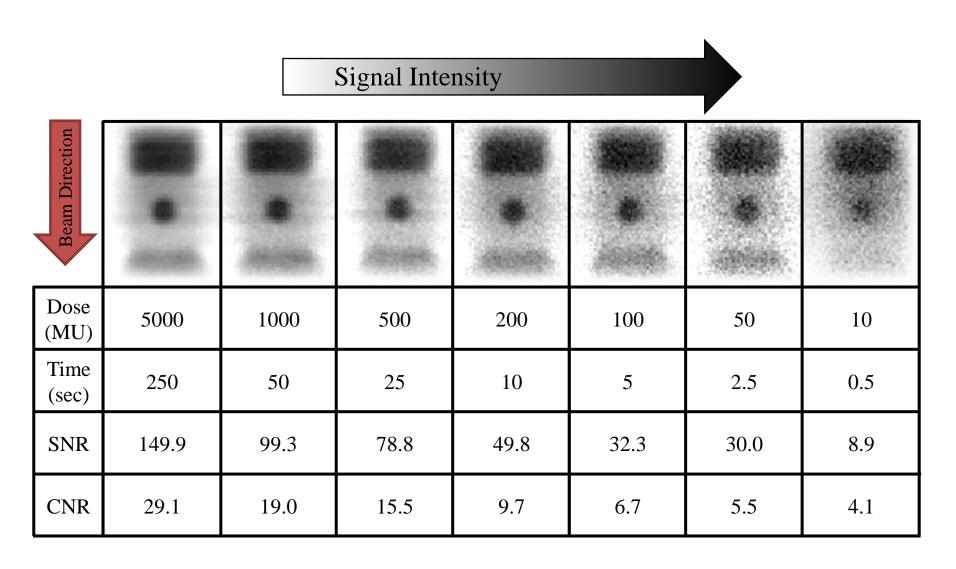

$$CNR = \frac{|S_T - \bar{S}_L|}{\sigma_T}$$


- $-S_T$ is the image intensity, averaged over a central region within the tumor
- $-\bar{S_L}=rac{S_{L_1}+S_{L_2}}{2}$, where S_{L_1} and S_{L_2} are image intensity, averaged over regions within the lung surrounding the tumor
- $-\sigma_T$ is the standard deviation of the image intensity over the same central region within the tumor used to calculate S_T

Note: SNR and CNR should be approximately proportional to \sqrt{dose} and to linear pixel dimension

Contrast Between Materials

- Signal → Average over 18,216 pixel cylinder ROI
- Noise → Standard deviation in cylinder ROI
- Background → Average over surrounding 189,880 pixel ROI
- $SNR_I = 6.1$, $SNR_W = 6.7$, $SNR_B = 5.3$
- $CNR_L = 4.4$, $SNR_W = 5.3$, $SNR_R = 4.1$



Lung SBRT Image Guidance

Current limitations:

- Only 2D or limited 3D information
- Additional radiation dose
- Not available during treatment / Not real-time
- Logistically complex (limited positioning options, collision danger)
- Invasive fiducial implants required
- Poor image contrast
- Not directly imaging the target

